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The Rectangle of Influence Drawability Problem * 

G. Liotta* A. Lubiw * H. Meijer § S. H. Whitesides11 

Abstract 

A proximity drawing of a graph is a straight-line drawing where adjacent vertices 
are represented by points that are deemed to be close according to some proximity 
measure. A rectangle of influence drawing is a proximity drawing where the measure is 
based on the concept of rectangle of influence. Given two points u and v, the rectangle 
of influence, of u and v is the axis-aligned rectangle having u and v at opposite corners. 
The rectangle of influence drawing of a graph G is a proximity drawing of G such that 
(i) for each pair of adjacent vertices u, v of G, the rectangle of influence of the points 
representing u and v is empty (i.e. contains no point representing a vertex distinct 
from u and v), and (ii) for each pair of non-adjacent vertices u, v of G, the rectangle of 
influence of the points representing u and v is not empty. Two different representation 
models are possible depending on whether the rectangle of influence is an open or a 

closed set. 
In this paper we study the drawability of several classes of graphs with respect 

to both the closed and the open model. We characterize, for each class and model, 
which graphs have a rectangle of influence drawing. For each class we show that testing 
whether a graph G has a rectangle of influence drawing can be done in 0(n) time, where 
n is the number of vertices of G. Furthermore, if the test for G is affirmative, we show 
how to construct a rectangle of influence drawing of G. All the drawing algorithms can 
be implemented so that they (1) produce drawings with all vertices placed at intersection 
points of an integer grid of size 0(n2), (2) perform arithmetic operations on integers 
only, and (3) run in 0(n) time, where n is the number of vertices of the input graph. 
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1    Introduction 

The problem of drawing a graph in the plane has been receiving intensive investigation due 
to its importance in a large number of application areas. These areas include VLSI layout, 
algorithm animation, visual languages and CASE tools. Vertices are usually represented as 
points in the plane and edges as simple Jordan curves connecting pairs of points. Typically, 
graph drawing tools and algorithms adopt a given drawing convention (for example edges 
are represented by straight-line segments or orthogonal chains) and attempt to solve several 
optimization problems (e.g. minimizing the area of the drawing, maximizing the number 
of convex faces, minimizing the number of bends along the edges, etc.). For an extensive 
overview of graph drawing problems and algorithms the reader is referred to the bibliography 
by Di Battista, Eades, Tamassia and Tollis [6]. 

1.1     Proximity Drawings 

Given a pair u, v of points in the plane, a proximity region of u and v is a portion of the 
plane, determined by u and v, that contains points relatively close to both of them. Many 
definitions for the proximity region of u and v have been proposed in the literature. Widely 
used definitions include: (i) closed and open disks (also called Gabriel regions [23] and 
modified Gabriel regions [4], respectively) having u, v as antipodal points; (ii) closed and 
open lunes (also called relatively closest regions [20], and relative neighborhood regions [29], 
respectively) obtained as the intersection of the two disks with centers u and v and radius 
the distance d(u,v); and (iii) closed and open axis-aligned rectangles (also called closed 
rectangles of influence and open rectangles of influence [16]) having u, v at opposite corners. 

A straight-line drawing (for example, see [14, 15, 18]) of a graph G is a mapping of each 
vertex v of G to a distinct point of the plane and of each edge (u, v) of G to a straight-line 
segment connecting the points that represent u and v. 

A proximity drawing of a graph G is a straight-line drawing of G such that (i) for each 
pair of adjacent vertices u, v of G, the proximity region of the points representing u and v is 
empty (i.e. contains no point representing a vertex distinct from u and v) and (ii) for each 
pair of non-adjacent vertices u, v of G, the proximity region of the points representing u 
and v is not empty. An open proximity drawing is a proximity drawing where all proximity 
regions are open. Analogously, a closed proximity drawing is a proximity drawing where all 
proximity regions are closed. An open rectangle of influence drawing is an open proximity 
drawing where the proximity region is the open rectangle of influence. A closed rectangle 
of influence drawing is a closed proximity drawing where the proximity region is the closed 
rectangle of influence. 

Figure 1(a) shows an open rectangle of influence drawing. The open rectangle of influ- 
ence of vertices g and h is represented by a dotted rectangle in the figure. It is easy to verify 
the emptiness of all the open rectangles of influence determined by endpoints of edges in the 
drawing. Observe also that for any pair of non-adjacent vertices, the corresponding open 
rectangle of influence is non-empty; for example, it is easy to see that the open rectangle of 
influence defined by vertices d and b contains c. Figure 1(b) shows the closed rectangle of 
influence drawing whose set of vertices is the same set of points as the one of Figure 1(a). 



(a) (b) 

Figure 1: Examples of rectangle of influence drawings for (a) the closed model and (b) the 
open model. 

Proximity drawings have been intensively studied in recent years because they arise in 
many areas as descriptors of the shape or skeleton of a set of points (for example, see [19], 
[27]). Examples of such areas include pattern recognition and classification, geographic 
variation analysis, geographic information systems, computational geometry, computational 
morphology, and computer vision. For a complete survey on the different types of proximity 
regions and their corresponding skeletons and on application areas, the reader is referred 
to the survey paper by Jaromczyk and Toussaint [17]. 

While techniques have been designed for the efficient computation of the skeleton of a 
given set of points, the problem of determining which graphs have proximity drawings has 
only just begun to be studied. The proximity drawability testing problem is to determine, 
for a given definition of proximity region, whether a graph admits a proximity drawing. 
Recent results in this new area of research include the following. In [22] it is proved that 
all biconnected outerplanar graphs have proximity drawings with the relative neighborhood 
proximity region and that all maximal outerplanar graphs have proximity drawings with 
the Gabriel proximity region. In [2] a complete characterization is given of those trees that 
admit a proximity drawing for each of the following types of proximity region: (i) relative 
neighborhood region, (ii) relatively closest region, (iii) modified Gabriel region, and (iv) 
Gabriel region. In [3], the authors studied the proximity drawability testing problem for 
trees for an infinite family of parametrized proximity regions, called ß-regions, that include 
open and closed disks and lunes as special cases. The proximity drawability testing problem 
of trees in 3-dimensional space with 3-dimensional /3-regions is studied in [21]. Results that 
are closely related to the proximity drawability testing problem concern the drawability of 
trees as minimum spanning trees [10], of triangulations as Delaunay triangulations [9, 8], 
and of graphs as nearest neighbor graphs [25, 11]. A survey on the proximity drawability 
testing problem is given by [7]. 



1.2    Overview of the Paper 

In this paper, we study the drawability problem in both the open rectangle of influence 
model and in the closed rectangle of influence model. We say that a graph is open rectangle 
of influence drawable (or open RID) if it admits an open rectangle of influence drawing. 
Similarly, a graph is closed rectangle of influence drawable (or closed RID) if it admits a 
closed rectangle of influence drawing. For example Figure 2(a) shows a closed rectangle of 
influence drawing of a 4-cycle, which is not an open RID graph. Figure 2(b) is an open 
rectangle of influence drawing of K5 (i.e., the complete graph on five vertices), which is not 
a closed RID graph. 

(a) (b) 

Figure 2: Examples of rectangle of influence drawings for (a) a 4-cycle and (b) K5. 

All the known algorithms for constructing proximity drawings of graphs assume the 
real RAM model of computation and a grid of exponential size. In the next theorem, we 
show that by contrast, rectangle of influence drawings do not require exponential area. 
Furthermore, the algorithms we will describe can be implemented so that all the numbers 
they deal with are integers only. 

Theorem 1.1 Any (open or closed) rectangle of influence drawable graph G with n vertices 
admits an (open or closed) rectangle of influence drawing on an integer grid of size 0(n2) . 

Proof: Let T be any (open or closed) rectangle of influence drawing of G. We show that T 
can always be transformed into a grid drawing of G that requires 0(n2) area. 

Let x0,xi,---,xt denote the distinct x-coordinates of the points of T representing vertices 
of G in order from left to right, and let y0, j/i, • • •, yi denote their distinct y-coordinates sorted 
from bottom to top. Construct a grid drawing T' of G as follows. Transform each point 
(xi,yj) of T to point (i,j) on the grid. Since both the x- and the y-ordering of the points 
representing the vertices of G in V is the same as the z-ordering and the y-ordering of the 
corresponding points in T, we can conclude the following. 

1. 

2. 

If the (open or closed) rectangle of influence of points p = (x;, y,) and q = (xk, yh) in V 
is empty, then the (open or closed) rectangle of influence of p' = (i,j) and q' = (k, h) 
in r" is empty. 

If the (open or closed) rectangle of influence of points p = (x,-,y,) and q = (xk,yh) 
in T contains a point a = (xr,ys), then the (open or closed) rectangle of influence of 
p' = (i,j) and q' = (k, h) in V contains a point a' = (r, s). 



Thus, I" is an (open or closed) rectangle of influence drawing of G with all the vertices 
placed at integer grid points. Because of the choice of the points representing the vertices 
of G in I", the size of the minimum axis-aligned rectangle covering H is 0(n2). □ 

Our characterization results are as follows. 

Open rectangle of influence drawable graphs . 

1. Cycles and Wheels: Every wheel is open rectangle of influence drawable. No cycle 
consisting of more than three vertices is open rectangle of influence drawable 

(Subsection 4.1). 

2. Trees: A trees is open rectangle of influence drawable if and only if it is a path; 
furthermore, this result can be generalized to all triangle-free graphs (Subsec- 

tion 4.2). 
3. Outerplanar graphs: A biconnected outerplanar graph is open rectangle of influ- 

ence drawable if and only if it is maximal and its dual is a path (Subsection 4.3). 

4. Cliques: A clique is open rectangle of influence drawable if and only if it has at 
most eight vertices (Subsection 4.4). 

Closed rectangle of influence drawable graphs . 

1. Cycles and Wheels: Every cycle and every wheel is closed rectangle of influence 
drawable (Subsection 5.1). 

2. Trees: A tree is closed rectangle of influence drawable if and only if it has at 
most four leaves (Subsection 5.2). 

3. Outerplanar graphs: Any outerplanar graph whose dual is a tree with at most 
three leaves is closed rectangle of influence drawable. No outerplanar graph 
whose dual is a tree with more than four leaves is closed rectangle of influence 
drawable. Some outerplanar graphs whose dual has four leaves are closed RID 
and some are not. (Subsection 5.3). 

4. Cliques: A clique is closed rectangle of influence drawable if and only if it has at 
most four vertices (Subsection 5.4). 

A consequence of the above characterizations is that, given one of the classes of graphs 
considered in this paper, the test to determine whether a graph G of the class is an open 
(closed) RID graph can be done in 0{n) time, where n is the number of vertices of G. 
Furthermore, if the test for G is affirmative, a proximity drawing of G can be constructed 
in 0(n) time. Since the analyses of the time complexity of the algorithms presented in the 
paper are entirely straightforward, we have omitted them. 

Besides graph drawing applications, our research is motivated by questions about rect- 
angular visibility between points (for example, see [24], [5]). Given a set of distinct points 
in the plane, two points of the set are said to be rectangularly visible if their rectangle of 
influence is empty. Much attention has been given to rectangular visibility over the past 
years because of its importance in several computational geometry problems (for example 



the enclosure problem of n points in the plane, the problem of finding the shortest Manhat- 
tan path among planar obstacles, and art gallery problems). Since the edges of a rectangle 
of influence drawing relate pairs of points that are rectangularly visible, the results of the 
present paper answer the. question of recognizing, for various classes of graphs, which graphs 
of the class can describe rectangular visibility relations between points in the plane. 

The paper is organized as follows. Basic definitions are in Section 2. Properties of both 
open and closed rectangle of influence drawable graphs are in Section 3. Classes of open 
rectangle of influence drawable graphs and closed rectangle of influence drawable graphs are 
studied in Sections 4 and 5, respectively. Conclusions and open problems are in Section 6. 

2    Preliminaries 

We start by reviewing some definitions on graphs. Then we introduce the geometric termi- 
nology that will be used in the paper. See also [1, 26] 

2.1     Classes of Graphs 

A graph G = (V, E) consists of a finite non-empty set V(G) of vertices and a set E(G) of 
undirected edges. An edge e 6 E(G) joining vertices u and v is denoted by e = (u,u); u 
and v are called the endpoints of e and are said to be adjacent vertices or neighbors. Edge 
e is also said to be incident with v. The degree of a vertex v 6 V{G), denoted by degG(v), 
or just deg(v), is the number of edges of E{G) that have v as an endpoint. A graph is 
complete if all pairs of vertices are adjacent. A subgraph of G is a graph H - (V, E') where 
V' C V and E' C E. An induced subgraph H = (V, E') of G is the maximal subgraph of G 
with vertex set V. A clique of a graph is a complete subgraph. A clique with n vertices is 
denoted by K„. 

A path in a graph G is a finite non-empty sequence P = v^v2 .. .vk where the vertices 
vi, v2, • • •, vk are distinct and (ut-, vi+i) is an edge for each i = 1,..., k - 1. The vertices vy 

and vk are called the endpoints of the path. A cycle is a path whose endpoints are adjacent. 
A graph consisting of a cycle on n vertices is denoted by C„. A wheel consists of a cycle 
along with a center vertex adjacent to all the cycle vertices. A wheel with n vertices is 
denoted by Wn. An acyclic graph is a graph that contains no cycles. A graph is connected 
if, for each pair of vertices u,v G V, there is a path from u to v. A graph is biconnected 
if, for each pair of vertices u, v £ V, there are two paths from u to v that have only their 
endpoints in common. A tree T is a connected acyclic graph. A vertex v EV(T) such that 
degr(v) = 1 is a leaf oi T. A branch of a tree is a path formed by vertices of the tree that 
have degree at most 2 in T. 

A drawing of a graph G = (V, E) is called a planar drawing if no curve representing an 
edge intersects itself or any other curve except possibly at a common endpoint with that 
other curve. A planar drawing divides the plane into topologically connected regions called 
faces; each face is identified by the circular list of the vertices and the edges of its boundary. 
The unbounded region is referred to as the external face; the bounded regions are referred 
to simply as faces. A graph is said to be a planar graph if it admits a planar drawing. The 



dual graph of a planar graph G is a graph that has a vertex for each face (bounded) of G 
and an edge between two vertices u and v if and only if the faces corresponding to u and v 

share an edge in G. 

An outerplanar graph is a planar graph whose vertices all belong to the external face. 
The edges on the external face are called boundary edges, and the remaining edges are 
called chordal edges. In what follows we restrict our attention to outerplanar graphs that 
are biconnected. Observe that the dual graph of a (biconnected) outerplanar graph is a 
tree. A maximal outerplanar graph is an outerplanar graph such that no edge can be added 
without losing outerplanarity. A triangulation is a planar graph where each face (except 
possibly the external face) is bounded by three edges. A triangle-free graph is a graph that 
does not have a complete subgraph K3. 

2.2    Geometric Notation 

Given two distinct points u, v of the plane, we denote by R(u, v) the open rectangle of 
influence ofu,v (i.e. the axis-aligned open rectangle having u and v at opposite corners), 
and we denote by R[u, v] the closed rectangle of influence ofu, v (i.e. the axis-aligned closed 
rectangle having u and v at opposite corners). 

Note that if u and v determine either a horizontal or a vertical line, then R(u, v) and 
R[u, v] become degenerate rectangles. Since we aim at constructing readable [28] drawings 
of graphs, we want to disallow an edge to go through a vertex in the drawing. Consequently, 
we adopt the following convention to handle degenerate rectangles. 

Convention 2.1 Ifu,v,w are points on the same horizontal (vertical) line and if v lies 
between u and w, then we say that R(u, w) and R[u, w] contain v. 

Let P denote a set of distinct points in the plane. We denote by RIG[P] the graph 
G that has vertices corresponding to the points of P, with an edge joining two distinct 
vertices if and only if their corresponding points u and v determine a closed rectangle of 
influence that is empty, i.e. R[u, u] n (P - {u, v}) = 0. For example, Figure 3 gives a set 
P and the adjacency list of RIG[P]. In Figure 3(a), the rectangle of influence R[d,b] is 
highlighted; since it contains points other than d and 6, vertices d and b are not adjacent 
in RIG[P]. Notice that computing RIG[P] on a given set of points is a different problem 
than computing a closed rectangle of influence drawing of a given graph. For a solution to 
the first problem see [24]. 

Clearly, RIG[P] is a closed RID graph, and a closed rectangle of influence drawing of 
RIG[P] can be obtained by connecting with straight-line segments the points of P that 
correspond to pairs of adjacent vertices in RIG[P]. 

Similarly, RIG(P) denotes the graph that has vertices corresponding to the points of 
P, with an edge joining two distinct vertices if and only if their corresponding points u and 
v determine an open rectangle of influence that is empty, i.e. R(u, v) n P = 0. In case P 
contains three or more collinear points lying on a horizontal or a vertical line, Convention 2.1 
applies: a pair of these points generates an edge in RIG(P) if and only if the two points 
lie adjacent to each other on the line.  As for the previous definition, RIG(P) is an open 



• b 

R[ d , b ] 

(a) 

a: f, h 

b: h, c 

c: b, d, h, g 

d: c, g 

e: g, f 

f: e, g, h, a 

g: d, c, h, f, e 

h: g, c, b, a, f 

(b) 

Figure 3: (a) A set of points P, and (b) the graph RIG[P]. 

RID graph, and an open rectangle of influence drawing of RIG(P) can be obtained by 
connecting with straight-line segments the points of P that correspond to pairs of adjacent 

vertices in RIG{P). 

To simplify the notation, we use RIG[P] to denote both the graph G and its closed 
rectangle of influence drawing with vertex set P. Similarly for RIG{P). Consequently, we 
use the terms point and vertex interchangeably, and we use the terms straight-line segment 

and edge interchangeably as well. 

2.3    Minimum Spanning Trees and Gabriel Graphs 

A minimum spanning tree of P, denoted MST(P), is a connected straight-line drawing 
with vertex set P that minimizes the total edge length (clearly such a drawing is a tree). In 
general, a set P may have many minimum spanning trees (for example, P might consist of 
the vertices of a regular polygon). We adopt the same convention as in the previous section 
and denote by MST(P) both the tree and a drawing of it with vertex set P. 

The Gabriel graph of P, denoted GG(P), is a straight-line drawing with vertex set P 
that has an edge between two distinct vertices u, v £ P if and only if d2(u, v) < d2(u, w) + 
d2(v,w) for all w £ P, w ^ u,v. That is, u, v are adjacent if and only if the closed disk 
having u, v as antipodal points does not contain any other vertex except u, v. GG(P) is 
connected and planar [23]. Again, GG(P) denotes both the graph and a drawing of it with 

vertex set P. 



3    Properties of Open and Closed RID Graphs 

First we establish a relation between open and closed RID graphs, minimum spanning 
trees, and Gabriel graphs; next we show a geometric property of open and closed rectangle 
of influence drawings; finally, we present a theorem that makes it possible to define (open 
or closed) RID subgraphs of (open or closed) RID graphs. 

Lemma 3.1 Let P be a set of distinct points of the plane. Then 

MST(P) C GG(P) C RIG[P] C RIG{P). 

Proof: The relation MST(P) C GG(P) C RIG[P] has been proved in [16]. We prove here 
that RIG[P] C RIG(P). For every pair of adjacent vertices u, v <E RIG[P], we have that 
R[u, v] n P = {u, v}. Since R(u, v) C R[u, v], R(u, v) is empty. ° 

One consequence of the above lemma is that both open and closed rectangle of influence 
drawable graphs are connected. A second consequence is stated in the following corollary. 

Corollary 3.1 Let P be a set of points such that RIG(P) is a tree. Then MST{P) = 
GG(P) = RIG[P] = RIG(P), and the minimum spanning tree of P is unique. Similarly, 
ifRIG[P] is a tree, then MST{P) = GG{P) = RIG[P] and the minimum spanning tree of 

P is unique. 

Lemma 3.2 Let u, v be any two vertices in a (open or closed) rectangle of influence draw- 
ing, and let S be the set of vertices contained in the (open or closed) rectangle of influence 
ofu and v. Then there is a path U connecting u and v such that all the vertices of II belong 

to S. 

Proof: The proof is by induction on the number of vertices in the rectangle of influence 
R of u and v. The lemma is clearly true if R is empty. Suppose the lemma holds when R 
contains k points. If R contains k + 1 points, let to be a point in R closest to u. Observe 
that (u, w) is an edge in the drawing. The rectangle of influence of w and v contains at 
most k points of 5 and, by the inductive hypothesis, there is a path connecting tu and v 
using only vertices of 5. This completes the proof. D 

Corollary 3.2 Let P be a set of points in the plane, let r be a horizontal (vertical) line, 
and let Pi C P be the subset of points lying in one of the two open half-planes defined by 
r. Ifx,y is any pair of points of P\, then either RIG(P) (RIG[P\) has the edge (x,y), or 
RIG{P) (RIG[P\) contains a path II from x to y such that all the vertices ofU belong to 

Pi- 

Theorem 3.1 Let G be open (closed) RID. Suppose the set of vertices of G can be parti- 
tioned into three subsets A, B and K (A or B may be empty), such that K is a clique and 
there are no edges from A to B.  Then the subgraphs induced by A U K, BU K and K are 



open (closed) RID. Furthermore, an open (closed) rectangle of influence drawing of AU K, 
BliK and K can be obtained from an open (closed) rectangle of influence drawing of G by 
deleting all the points representing vertices of G not in these subgraphs together with their 
incident line segments. 

Proof: Let Y be an open (closed) rectangle of influence drawing of G. Without loss of 
generality assume that A is non-empty. Suppose the deletion of the points representing A 
in T creates a new edge (x, y) in the drawing. Then R(x, y) (R[x, y}) contains only vertices 
from A (A U {a;, y}). At least one of the vertices of A is in the rectangle R(x, y) (R[x, y]) 
and x and y are not in A. By Lemma 3.2, there is a path from x to y containing only 
vertices from A. Hence by the definition of B, neither x nor y can represent a vertex of B. 
It follows that x,y e K. Therefore (x,y) is not a new edge, because K is a clique. □ 

In other words, if K is a clique in an open or closed RID graph G, and if A is such that 
all edges with an endpoint in A have the other endpoint in if U A, then A can be removed 
from G and the resulting graph is still open or closed RID. This implies that the result 
of removing any vertex whose neighbors induce a clique is again RID. Also, if an open or 
closed RID graph G has several biconnected components, then each of these components is 
open or closed RID. 

4    Classes of Open RID Graphs 

4.1     Wheels 

Theorem 4.1 Every wheel is an open RID graph. 

Proof: Let Wn denote a wheel with n vertices. We present an algorithm to compute an 
open rectangle of influence drawing of Wn. Let v be the center of the wheel. Draw v at the 
origin. If n is 4, draw the three vertices of the external face at points (—1, -1), (1, -1), and 
(0,1) (see Figure 4(a)). For larger values of n, again place v at the origin. Then place three 
vertices at points (71 - 2,1), (-1,1) and (-1, -n + 2). Place the remaining n - 4 vertices of 
Wn at the points with integer coordinates lying on the closed line segment with endpoints 
(n - 4, -1) and (1, -n + 4) (see Figure 4(b)). □ 

4.2    Trees 

The class of trees that are open RID graphs coincides with the class of triangle-free open 
RID graphs. Notice that trees are in general a subclass of triangle-free graphs. 

Theorem 4.2 A triangle-free graph is open RID if and only if it is a simple path. 

Proof: We prove first that if a graph G is open RID and contains no 3-cycles, then G is 
a simple path.   Let RIG(P) denote an open rectangle of influence drawing of G.  First, 
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(-1,1) 

(0,1) 

(-i,-i) • • (i,-i) 

(6,1) 

(-1,-6) 

a) b) 

Figure 4: Illustration for Theorem 4.1 for a) n = 4 and b) n = 8. 

suppose that there exists an edge (u, v) of RIG(P) along some horizontal or vertical line 
L. Suppose P contains a point not on L. Let p be a point in P whose distance to L is 
minimum. Then R{p, v) and R{p, u) are empty and p, u, v is a 3-cycle in G, a contradiction. 
Hence all points of P lie on the line L, and G is a simple path. 

Secondly, suppose that no horizontal or vertical line contains more than one point of 
P. Let (u,v) be an edge of RIG{P), and consider where the other points of P can lie 
relative to the horizontal and vertical lines through u and v (see Figure 5). Without loss 
of generality, assume that both the x- and y-coordinates of v are strictly greater than the 
corresponding coordinates oiu. Clearly R{u, v) must be empty. Hence R[u, v] is also empty. 
Let P' denote the subset of P consisting of points with z-coordinate smaller than that of 
v and y-coordinate larger than that of u. If P' is not empty, then any point p' € P' whose 
distance to R(u, v) is minimum determines a 3-cycle with u and v in G, a contradiction. 
Hence P' is empty. Similarly, the set P" of points with z-coordinate larger than that of u 
and y-coordinate smaller than that of v is empty. 

Because P' and P" are empty, any vertex W{ adjacent to u and distinct from v must 
be located at a point whose x- and y-coordinates are less than those of u; otherwise the 
rectangle R(wi, u) would contain v, which is impossible. Let W denote the set {w,-} of such 
vertices. We claim that \W\ < 1. If W is not empty, let wi denote the vertex in W with 
the largest z-coordinate. Then by the above argument with u and v replaced by Wi and 
u, respectively, any remaining vertices Wi G W, W{ ^ wi, must have x- and y-coordinates 
smaller than those of W\. Hence if W contains a second vertex w2, the interior of R(w2,u) 
contains wi, which is impossible. Hence \W\ < 1. But u represents any vertex of degree at 
least 1 in G. It follows that G is a path. 

11 



The proof is completed by observing that any path is open RID. In fact, an open 
rectangle of influence drawing of a path II can be obtained by representing the vertices of 
I! as collinear points. D 

Figure 5: Illustration for Theorem 4.2. 

Corollary 4.1 A tree is open RID if and only if it is a simple path. 

Besides the characterization of open RID trees and open RID triangle-free graphs, The- 
orem 4.2 implies the. following. 

Corollary 4.2 A bipartite graph is open RID if and only if it is a simple path. 

Corollary 4.3 No cycle Ck such that k > 4 is open RID. 

Note that C3 is open RID, as any equilateral triangle is an open rectangle of influence 
drawing of it. 

4.3    Outerplanar Graphs 

We first characterize maximal outerplanar open RID graphs. Then we show that bicon- 
nected non-maximal outerplanar graphs are not open RID. 

Lemma 4.1 A maximal outerplanar graph whose dual is a simple path is open RID. 

Proof: Let G be a graph whose dual is a simple path. If G has fewer than five vertices, 
a drawing can be found easily (for example if G has four vertices, three of them can be 
represented as horizontally collinear and the fourth one as vertically collinear with one of 
the first three), so assume that G has at least five vertices. 

Observe that G has exactly two vertices of degree 2.   Label these vertices left and 
right. Divide the remaining vertices into two chains from left to right. Let a\ and a^ be 
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neighbors of left and right, respectively, on one of the chains. We will call this chain the 
top chain. Let h and b2 be neighbors of left and right, respectively, on the second chain, 
called the bottom chain. Note that one of a2 or b2 has degree 3, but not both. Without loss 
of generality assume that b2 has degree 3. 

An open rectangle of influence drawing of G can be constructed as follows. Make a 
list of the vertices of the top chain, ordered from ax to a2. Make a list of vertices of the 
bottom chain, ordered from bx to b2. Merge these two lists as follows. Begin by placing all 
the vertices of the top chain in the merged list. Then, for each vertex b from h to (but 
not including) b2, place b in the merged list such that it appears immediately before its 
last neighbor in the top chain. Finally, place b2 at the end of the list. Draw vertex left at 
the point (0,1). Draw the ith vertex of the merged list at x-coordinate i and on the line 
y = x/c + 1, if it is a vertex of the top chain and on line y = -x/c otherwise, where c is a 
suitably defined positive constant. Draw vertex right on line y = x/c + 1 to the right of b2 

(see Figure 4). 

It can be verified that this algorithm draws the vertices in such a way that R(u, v) is 
empty if and only if (u, v) is an edge of G. . D 

right 

Figure 6: How to draw a maximal outerplanar open RID graph. 

Lemma 4.2 A maximal outerplanar graph whose dual consists of a vertex of degree 3 ad- 
jacent to three vertices of degree 1 is not open RID. 

Proof: Let G be such a graph. Number the vertices of G from 0 to 5 such that vertex 0 
has degree 4 and the vertices 0, 1, 2, 3, 4 and 5 form a Hamiltonian cycle (see Figure 7). 
Thus vertices 0, 2 and 4 form a 3-cycle. Since not all three points representing vertices 
0, 2 and 4 can lie on the same vertical or horizontal line in an open rectangle of influence 
drawing of G, either two such points lie on the same horizontal or vertical line, or none do. 
Without loss of generality we may assume that the points representing vertices 0, 2 and 
4 have one of the placements in Figure 8. From Theorem 3.1 we deduce that if we have 
an open rectangle of influence drawing of G, we can remove any of the vertices 1, 3 and 5 
and still have a valid drawing. Using this fact, we will show that all four placements are 
impossible by trying to add the remaining vertices one at the time. 

In placements (a), (b), and (c), vertex 5 has to be placed below the line through 0 and 
4, so it is not possible to place vertices 1 or 3 on the line through 0 and 4. Placement (a) 
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is not possible since point 1 cannot be placed such that only triangle 012 is formed. In 
the second triangle (placement(b)), vertex 1 has to be on the vertical line through vertex 
4. Then it is not possible to place vertex 3 such that only triangle 234 is formed. In 
placement(c), vertices 1 and 3 have to be placed in the open areas indicated in the figure, 
which is impossible without creating the edge (1,3). Figure 8(d) shows the last possible 
placement for the triangle 024 and the open areas that have to contain vertices 1, 3 and 5. 
Again, it can be seen that this is impossible without creating either the illegal edge (1,5) 
or the illegal edge (3,5). D 

Figure 7: A non-open RID outerplanar graph. 

.-• .•• v 

(a) (b) (c) (d) 

Figure 8: Illustration for Lemma 4.2. 

The result of the previous lemma can be generalized as follows. 

Lemma 4.3 Any maximal outerplanar graph whose dual has a vertex of degree 3 is not 
open RID. 

Proof: Suppose G is a maximal outerplanar graph whose dual has a vertex of degree 3. 
Assume that G is open RID. Each face of G that corresponds to a leaf in the dual tree of G 
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is a triangle with one vertex of degree 2. By Theorem 3.1, this vertex may be deleted from G 
and the resulting graph remains open RID. Therefore, the smallest maximal outerplanar 
graph whose dual has a vertex of degree 3 (see Figure 7) is open RID. This contradicts 
Lemma 4.2. Q 

Lemma 4.4 Any biconnected component of an outerplanar open RID graph is maximal 
outerplanar. 

Proof: To obtain a contradiction, let G be a biconnected component of an outerplanar 
RID graph having a face F with more than three vertices. We will remove vertices from G 
such that it remains open RID until only face F remains. 

If G has more than one face, then there is an edge in G that F shares with another face. 
The two vertices of this edge form a clique cut-set K of size 2. This cut-set partitions the 
set of vertices of G into subsets A, B and K. Assume that the vertices of F are in K U B. 
By Theorem 3.1, the vertices in A can be deleted and the resulting graph remains open 
RID. If K U B still has more than one face, we choose another edge of F and repeat the 
procedure until only F remains. Since F is a simple cycle with more than three vertices 
and only cycles of length 3 are open RID by Corollary 4.3, it follows that G has no interior 
faces with more than three vertices. Hence G is maximal outerplanar. □ 

The following theorem summarizes the results of this section. 

Theorem 4.3 A biconnected outerplanar graph is open RID if and only if it is maximal 
and its dual is a path. 

4.4     Cliques 

In this subsection, we consider which cliques are open RID graphs or subgraphs of such 
graphs. 

Let P be a set of points such that RIG(P) is a clique and let R denote the smallest 
closed, axis-aligned rectangle that contains RIG(P). We call this the bounding rectangle of 
P. We call a set S of points non-aligned if no two points of S are on the same horizontal 
or vertical line. 

Lemma 4.5 If a, b, c are non-aligned points of P ordered by x-coordinate, then they cannot 
also be in order (increasing or decreasing) by y-coordinate. 

Proof: The vertex b would be in R(a, c). □ 

Lemma 4.6 If P' is a non-aligned subset of P, then \P'\ < 4. 
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Proof: Suppose \P'\ = 5. Order P' by increasing z-coordinate. We apply a result of 
Erdös and Szekeres [13] that in a sequence of more than jk distinct integers, there is either 
an ascending (not necessarily contiguous) subsequence of length j + 1 or a descending 
subsequence of length k + 1. In our case j = k = 2. Thus there are three points from this 
ordered list with increasing or with decreasing y-coordinates, which contradicts Lemma 4.5. 

D 

Theorem 4.4 A clique Kn is open RID if and only ifn<8. 

Proof: The sufficiency of the condition can be shown by construction. There are many 
ways to define a point set P such that RIG{P) is K8. For example, see Figure 9. 

An open rectangle of influence drawing for each n < 8 can be obtained from the drawing 
in Figure 9 by removing the appropriate number of vertices, since this destroys no edges. 
This completes the proof that the condition suffices. 

Figure 9: An open rectangle of influence drawing of K%. 

Now we establish the necessity of the condition. Let P' be a maximum size non-aligned 
subset of P. Lemma 4.6 implies that \P'\ < 4. If \P'\ < 3, then, since each point of P' can 
be aligned horizontally with at most one point of P - P' and can be aligned vertically with 
at most one point of P - P', P has at most 9 points. The only way to get \P\ = 9 would 
be to have \P'\ = 3, and for each point of P', to have two other points aligned with it and 
not aligned with any other point of P'. Suppose that x 6 P' and that y and z are aligned 
with x. Then P' - {x} U {y, z} is a larger non-aligned set, a contradiction. 

Now consider the case |P'| = 4. Let a,b,c,d be the points of P' ordered from top to 
bottom. Assume without loss of generality that b is left of a (otherwise flip the points about 
a vertical line through a). We cannot have c left of b; otherwise c, 6, a would be in order by 
x- and y-coordinates, contrary to Lemma 4.5. Having c between b and a in the x-ordering 
does not leave room for d: d left of c would make <2, c, a violate Lemma 4.5; and d right of 
c would make d, c, b violate Lemma 4.5. Thus we must have c to the right of a. 

Now d can be. neither left of b nor right of c by the same argument as above. We are left 
with two cases: (1) d between b and a in the z-ordering and (2) d between a and c in the 
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z-ordering. Any remaining points must be aligned vertically or horizontally with at least 
one of a, b, c, d. We will show that there are at most four such remaining points. 

*c *c 

case 1 

d 

case 2 

Figure 10: Figure for Theorem 4.4. 

Suppose there is a point x higher than a. We. cannot have x left of a; otherwise c, a, x 
would violate Lemma 4.5. Nor can x be right of a; otherwise b, a, x would violate Lemma 4.5. 
If x is vertically aligned with a, we replace a by x in P'. We can make a similar argument 
for points left of b, points right of c, and points below d. 

Thus we may assume, no points of P are outside the closed rectangle R that is the 
smallest rectangle containing P'. Points of P may lie on the boundary of R, or on a few 
closed line segments inside R: the vertical line segment from a down to the y-coordinate of b, 
the horizontal line segment from b on the left to the minimum of the ^-coordinates of a and 
d; the horizontal line segment from c on the right to the maximum of the z-coordinates of a 
and d, and the vertical line segment from d up to the y-coordinate of c. Other possibilities 
are ruled out because the open rectangles determined by each pair of points of P' must be 
empty. See Figure 10. 

Any point of P — P' must be aligned with at least one of a, b, c, d. It is possible that a 
point of P - P' is aligned with more than one of a, b, c, d. We will assign points of P - P' 
to a unique aligned point of P' to simplify the ensuing case analysis. A point vertically 
aligned with a and horizontally aligned with d should be assigned to d. In case 1, the point 
vertically aligned with a and horizontally aligned with c should be assigned to c. Do a 
symmetric, assignment for the other points. Any remaining points that are aligned with two 
of a, b, c, d may be assigned arbitrarily. Note that the set of possible locations for the points 
assigned to a is a connected set in the form of a "T"; similarly for the possible locations for 
points assigned to b, c, or d, respectively. 

Now the only possible way to get \P\ > 8 is to have two points of P assigned to some 
point of P'. 
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Consider case 1 first. The dashed line in Figure 10 shows the possible locations for 
points in P - P'. Having a point assigned to a and vertically aligned with a precludes 
having a point horizontally aligned with a to the right or to the left of a because of d and 
c respectively. A similar argument applies to the other points. Thus we can have at most 
one point assigned to each point of P', giving a total of at most eight points. 

In case 2 it is possible to have a point u assigned to a and vertically aligned with a, 
and to have a point v horizontally aligned with a to the right of a, but only by placing u 
horizontally aligned with b. In this case we cannot have a point vertically aligned with b 
above or below b, because of u, c or u, v, respectively. Thus the two points a and b can have 
in total only two assigned points, and since a similar argument can be applied to the other 
points, P has at most eight points. 

The next theorem uses the results of this subsection to determine which cliques can be 

proper subgraphs of open RID graphs. 

Theorem 4.5 Kn may appear as a proper subgraph of an open RID graph if and only if 

n< 8. 

Proof: To establish the necessity of the condition, note that any clique Kn that is a proper 
subgraph of an open RID graph G must itself be open RID. This is because a drawing for 
Kn can be obtained from a drawing for G by removing all points not representing vertices 
of Kn, by Theorem 3.1. Hence by Theorem 4.4, n < 8. 

To see that Kn can appear as a proper subgraph of a larger, open RID graph whenever 
n < 8, take an open rectangle of influence drawing RIG{P) of Kn and add to P a point z 
lying outside the bounding rectangle of RIG{P). We have RIG{P) C RIG{P U {*}).      □ 

5     Classes of closed RID Graphs 

5.1    Wheels and Cycles 

Theorem 5.1 Every wheel is a closed RID graph. 

Proof: Every wheel except W4 = K4 can be drawn by following the algorithm in the proof 
of Theorem 4.1. To construct a closed rectangle of influence drawing of K4, one can map 
the four vertices of K4 to points (-1,0), (1,0), (0,-1), and (0,1). D 

Notice that it is not possible to construct a planar closed rectangle of influence drawing 
of K4, since this would require having a vertex inside a triangle and outside the rectangle 
of influence of any of the edges in the triangle, which is impossible. 

Theorem 5.2 Every cycle is a closed RID graph. 

Proof: C3 is a closed RID graph, as the vertices of C3 can be represented by the vertices 
of a triangle with all angles acute. Consider any other Ck, where k > 4. A closed rectangle 
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of influence drawing of Ck can be constructed by placing four of its vertices at the corners 
of an axis-aligned square and by placing the remaining k-4 vertices along one of the four 
edges of the square. 

5.2    Trees 

The following lemma is a consequence of Corollary 3.1 and Lemma 5.2 of [2], which proves 
that whenever the Gabriel graph GG{P) of a set of points Pisa tree, then the angle 
between any two incident edges is greater than or equal to TT/2. 

Lemma 5.1 Let P be a set of points such that RIG[P] is a tree. Then the angle between 
any two consecutive edges is greater than or equal to n/2. 

Corollary 5.1 A closed RID tree has vertices with degree at most 4. 

Lemma 5.1 together with Corollary 3.2 have important implications for the shape of the 
closed rectangle of influence drawing of a tree, as the following lemma states. 

Lemma 5.2 Assume RIG[P] is a tree and let x be a vertex of RIG[P]. 

1. If deg(x) = 3, at least two of the edges incident with x are axis-aligned. 

2. If deg(x) = 4 all edges incident with x are axis-aligned. 

Proof: One cannot have two edges from x in the same horizontal or vertical half-plane 
through x, as by Corollary 3.2 there would be a path joining the other end points of the 
edges but not containing x. D 

Theorem 5.3 A tree is a closed RID graph if and only if it has at most four leaves. 

Proof: Consider a closed rectangle of influence drawing RIG[P] of a tree T. Let v be a 
leaf of RIG[P] and let u be the neighbor of v. Let H be a closed orthogonal (vertical or 
horizontal) half-plane that bisects (v, u) and that contains v but not u. Let w be another 
vertex in H. By Lemma 3.2 there is a path from vtoto not through u. This is impossible. 
Therefore the only point of P in H is v. Hence for each leaf v of T, there exists a closed 
orthogonal half-plane containing only v. Since there can be at most four such half-planes, 
it follows that T has at most four leaves. 

To complete the proof we have to show that if a tree T has at most four leaves, then it 
is a closed RID graph. Observe that only one of the two following cases can occur: 

1. T has one vertex of degree 4 and all the other vertices of T have degree at most 2. 

2. T has no vertex of degree 4 and at most two vertices of T have degree at most 3. All 
the other vertices of T have degree at most 2. 
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When case 1 occurs, the construction of a closed rectangle of influence drawing of T 
can be. done by visiting T and placing each vertex at a grid point and its neighbors at 
distinct grid points at distance 1, so that two consecutive edges form an angle n/2 only if 
they are incident with a vertex of degree greater than 2. If T has two vertices u and v of 
degree 3, the same approach as for case 1 can be followed, with the additional constraint 
that no adjacent vertices of u and v are represented in the same horizontal or vertical open 
half-planes defined by the line through the points representing u and v. U 

5.3    Outerplanar Graphs 

This subsection studies the closed rectangle of influence drawability of biconnected outer- 
planar graphs in terms of the duals of these graphs. As previously mentioned, the dual 
of a biconnected outerplanar graph G is always a tree. We prove that if this tree has at 
most three leaves, then G has a closed rectangle of influence drawing. Then we prove that 
if the dual of G is a tree that has more than four leaves, then G cannot be closed RID. 
We conclude by showing that if the dual of G is a tree that has exactly four leaves, then G 
may or may not be closed RID. In particular, we exhibit two outerplanar graphs having 
four leaves in their dual trees; one of such graphs is closed RID , while the other is not 
closed RID. We leave as open problems the closed RID characterization, recognition and 
construction problems for bisonnected outerplanar graphs with four leaves in the dual. 

First we give some notation for our constructive proof that every biconnected outerpla- 
nar graph with at most three leaves in its dual is closed RID. 

Let s be a straight-line segment with endpoints u = (ux,uy) and v = (vx,vy), where 
uy > vy and ux < vx. Hence s is either vertical or has negative slope. Consider the open, 
horizontal strip bounded above and below by the lines y = uy and y = vy, respectively. 
Rectangle R[u, v] splits up this strip into pieces. Let Swest(s) and Seast(s) denote the half- 
infinite open strips to the left and right, respectively, of R[u, v]. See Figure 11. For a 
segment s that either is horizontal or has positive slope, we define strips Sn0rth(s) and 
Ssouth (s) in a similar manner. 

U      =      (Ux,Uy) 

S     As) 
west 

R[u,v] 

Wsf (s) 

v = (\,vy) 

Figure 11: Strips for segment s. 

Lemma 5.3 Let G be an outerplanar graph whose dual is a path, and let e be a boundary 
edge in a face corresponding to a leaf of the dual.   Let s be a line segment that either is 
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vertical or has negative slope. Then graph G has a closed rectangle of influence drawing such 
that e is represented by segment s and the remaining vertices are contained in Swest (s). 

Proof: The proof is constructive. To begin, place the endpoints of e at the endpoints of s. 
If G has only one face (i.e., one bounded face), place the vertices that are not the endpoints 
of e on any vertical line segment in Swest (s) to obtain the desired drawing. 

Assume now that G has at least two faces. We give a 3-step algorithm that constructs 
the desired closed rectangle of influence drawing of G. The first step is to construct a 
straight-line drawing of G that is not, in general, a closed rectangle of influence drawing. 
Its purpose is to facilitate the assignment in step 2 of labels to the chordal edges of G. Step 
3 uses these labels to construct the desired drawing of G. 

Assume that G has t chordal edges and hence t+1 faces. Let F0 and Ft be the faces 
corresponding to the leaves in the dual, which by assumption is a path. Suppose that e 
belongs to face Ft. Denote the remaining faces by F,-, 0 < i < t, such that face F,- has 
neighbours F,_i and F+i. Let C{ denote the chordal edge shared by faces F;_i and F,-. 

Step 1 constructs a planar, straight-line drawing of G by placing one endpoint of each 
chordal edge c,- on the line y = 0 and the other endpoint on the line y = 1 as shown in 
Figure 12. The vertices of F0 that are not endpoints of chordal edge c\ are drawn with y 
coordinates between 0 and 1 on a vertical line segment on the extreme left of the drawing. 
Similarly, the vertices of Ft that are not endpoints of ct are drawn with y coordinates 
between 0 and 1 on a vertical line on the extreme right. For 1 < i < t, F,_i is drawn to the 
left of F. 

1/ 1 

Figure 12: Outerplanar graph G. 

Step 2 of the algorithm labels the chordal edges of G as follows. For each vertex of G 
on the line y = 1 that is incident with one or more chordal edges, it labels the rightmost of 
these chordal edges with the letter I. For each vertex of G on the line y = 0 incident with 
one or more chordal edges, it labels the rightmost of these chordal edges with the letter r. 

Notice that this process assigns to each chordal edge at least one label and that ct is 
assigned both labels / and r. 

If ct and e share a vertex on the line y = 1, the label I is dropped from ct; hence the 
label of ct becomes simply r. If cj and e share a vertex on the line y = 0, the label r is 
dropped from Q, whose label becomes simply I. If ct and e do not share a vertex, ct retains 
both labels / and r. 
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Step 3 constructs the desired closed rectangle of influence drawing as follows. All chordal 
edges with label Z are drawn with negative slope, all chordal edges with label r are drawn 
with positive slope, and the remaining chordal edges are drawn vertically. How face F0 is 
drawn depends on how its chordal edge cx is labeled. Figure 13 shows how to draw Ft,. 
If a is labeled with one of Z and r, and if F0 has three or more vertices, then the face is 
drawn as in Figure 13(a) or (b), respectively. If a is labeled with both Z and r, and if F0 

consists of three vertices, then the face is drawn as in Figure 13(c); otherwise, it is drawn 
as in Figure 13(d). 

All faces F, for 0 < i < t have two chordal edges a and ci+1. Figure 14 shows how the 
these faces are drawn when a and ci+1 are labeled, respectively, with Z and 1, with Z and r, 
with Z and Ir, with Ir and Zr, and with Ir and r. The remaining possibilities for the labels 
of these chordal edges are r and r, r and Z, r and rl, and Ir and I. These cases are handled 
by drawing the faces in a manner analogous to the first, second, third and fifth drawings in 

Figure 14, respectively. 

Face Ft has only one chordal edge, ct. Figure 15 shows how to draw face Ft for each of 
the six possible situations that can arise: (a) ct and e share a vertex on the line y = 1 and 
s has a negative slope, (b) ct and e share a vertex on the line y - 1 and s is vertical, (c) 
ct and e share a vertex on the line y = 0 and s has a negative slope, (d) ct and e share a 
vertex on the line y = 0 and s is vertical, (e) ct and e do not share a vertex and s has a 
negative slope, and (f) ct and e do not share a vertex and s is vertical. 

It is easy to verify that the resulting drawing is a closed rectangle of influence drawing 
of G such that all vertices except for the endpoints of e lie in the open strip Swest(s).      □ 

Figure 16 shows the closed rectangle of influence drawing of the graph of Figure 12 that 
would be produced by applying the algorithm of Lemma 5.3 with segment s vertical. 

-«-•- 

-•-•- 

(a) (b) (c) (d) 

Figure 13: Drawings for face Fo. 

Lemma 5.4 Any biconnected outerplanar graph whose dual has at most three leaves is 

closed RID. 

Proof: Let G be an outerplanar graph with n vertices whose dual is a tree with at most 
three leaves. If the dual tree of G has less than three leaves, select an arbitrary boundary 
edge from a face corresponding to a leaf of the tree and draw it as a vertical segment s. 
Now place the remaining vertices of G by using the algorithm in the proof of Lemma 5.3. 
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s\ 

V    *M' 
Figure 14: Drawings for face F,- for 0 < i < t. 

•^T •^T 

M 
(a) (b) (c) (d) (e) (0 

Figure 15: Face Ft. 

Figure 16: Closed rectangle of influence drawing of the graph in Figure 12. 
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Suppose that the dual tree of G has exactly three leaves. Let F be the face of G 
corresponding to the unique node of degree 3 in the tree. Partition the remaining faces of 
G into three sets A, B and C so that two faces of G go to the same set of the partition if 
and only if they correspond to two nodes in the same branch of the dual tree. 

Let e = (u, v) be a chordal edge of F separating F from a face H in the set C of the 
partition of faces, and let d be a boundary edge of H incident with u. Draw e with u above 
and to the left of u, and draw d to the right of u on the horizontal line through u. See 
Figure 17. 

Traverse the edges of F beginning with e and proceeding next to the other edge of F 
incident with u. Place the edges following e to the left of u on the horizontal line through u 
until another chordal edge is encountered. Without loss of generality, suppose this chordal 
edge separates F from a face in set A of the face partition. Label this edge with a, and 
draw it with positive slope in such a way that its lower endpoint has y-coordinate greater 
than that of v. 

Now place all but the last remaining edge of F below and vertically aligned with the 
second endpoint of the chordal edge labeled a. Label one of these edges, namely the one 
corresponding to the third chordal edge of F, with the label b. 

Place all the vertices of H except the endpoints of e and d to the right of v on the 
horizontal line through v so that their x-coordinates are less than that of the right endpoint 
of d. If H contains a chordal edge other than e, then label this edge with the label c; this 
edge separates H from some other face in set C of the face partition. 

Let sa, si, and sc denote the segments representing the chordal edges labeled a, b and 
c, respectively. Apply the algorithm of Lemma 5.3 to place the remaining vertices of the 
faces in sets A, B and C of the face partition in strips Snorth(sa), Swest(sb) and SSOuth(sc) 
respectively. ^ 

Figure 19 gives the closed rectangle of influence drawing produced by applying the 
algorithm in the previous lemma to the graph G given in Figure 18. Note that Figure 18 
gives a straight-line drawing for G that is not a closed rectangle of influence drawing. 

Now we move from considering outerplanar graphs with at most three leaves in the dual 
tree to considering outerplanar graphs with more than four leaves in the dual. 

Lemma 5.5 No biconnected outerplanar graph whose dual has more than four leaves is 
closed RID. 

Proof: Let F be a face of G corresponding to a leaf of the dual tree. Let (x,y) be the 
unique chordal edge of F. Suppose G is a closed RID graph and let RIG[P] be a drawing 
of G. We say x and y are aligned in a drawing if the points that represent them determine 
a horizontal or vertical line. We will consider drawings in which x and y are aligned and 
drawings in which they are not aligned. 

If (x, y) is drawn on a vertical line /, then at least one vertex of F does not lie on this 
line. Assume without loss of generality that F has a vertex to the left of /, and let v be 
a left-most vertex of F in RIG[P]. Let H be the open, axis-aligned half-plane that lies to 
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Figure 17: Face F corresponding to the dual vertex of degree 3.  All possibilities for the 
placement of labels b and c are shown. 
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Figure 18: An outerplanar graph G whose dual tree has three leaves. 

Figure 19: A closed rectangle of influence drawing of G. 
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the left of the vertical line through v. Suppose H contains a vertex w of G that does not 
belong to F. Then by Lemma 3.2, there is a path from v to to not passing through x or y. 
Since this is not possible, the only vertices of G that can lie in H are degree 2 vertices of F. 

Similarly, if (x,y) is drawn on a horizontal line, then there is an open, axis-aligned 
half-plane that can only contain degree 2 vertices of F. 

If x and y are not drawn aligned, the rectangle R[x, y] is non-degenerate and empty. All 
vertices of F except x and y lie outside R[x,y]. Again without loss of generality, assume 
that F has a vertex to the left of R[x,y] and let v denote a leftmost such vertex. Again 
the open, axis-aligned half-plane to the left of the vertical line through v can contain no 
vertices of G other than degree 2 vertices of F. 

In the drawing RIG[P] we can find for each face F corresponding to a leaf of the dual 
tree of G an open, axis-aligned half-plane containing only degree 2 vertices from F. Since 
there can be at most four such half-planes, the theorem follows. D 

Finally, we consider the only remaining case, namely biconnected outerplanar graphs 
with exactly four leaves in their duals. 

Lemma 5.6 Some biconnected outerplanar graphs whose duals have four leaves are closed 

RID. 

Proof:  Figure 20 gives a closed rectangle of influence drawing of an outerplanar graph 
whose dual tree has four leaves. D 

Figure 20: A closed rectangle of influence drawing of an outerplanar graph whose dual tree 
has four leaves. 

Lemma 5.7 Some biconnected outerplanar graphs whose duals have four leaves are not 
closed RID. 
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Figure 21: An outerplanar graph that is not closed RID and whose dual tree has four 
leaves. 

Proof: Figure 21 gives an outerplanar graph with four leaves in the dual that is not closed 
RID. The proof that this graph does not admit a closed rectangle of influence drawing 
goes by a straightforward case analysis of the possible placements in the drawing for the 
vertices of the face that forms an 8-cycle. n 

The next theorem concludes this subsection with a summary of the results. 

Theorem 5.4 If a biconnected outerplanar graph has 

• at most three leaves in its dual, then it is a closed RID graph; 

• exactly four leaves in its dual, then in some instances it is a closed RID graph and in 
other instances, it is not a closed RID graph; 

• five or more leaves in its dual, then it is not a closed RID graph. 

5.4     Cliques 

In this subsection, we consider which cliques are closed RID graphs or subgraphs of such 
graphs. We adopt the same notation as in Subsection 4.4. 

Theorem 5.5 Kn is closed RID if and only if n < 4. 
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Proof: Let Kn be a closed RID clique, and let RIG[P] be a closed rectangle of influence 
drawing of Kn. By the reasoning of Subsection 4.4, we may assume that the smallest 
axis-aligned rectangle R containing the vertices of RIG[P] is non-degenerate. 

Suppose that the interior int(R) of R contains a vertex p of RIG[P], and let w be a 
vertex on the left side W of R. Suppose without loss of generality that y{w) < y{p). Let n 
be any vertex on N. Then x{n) < x(p) or {w,n) would not be an edge of RIG[P]. Let e 
be any vertex on side E of R. Because (w,e) is an edge, e must satisfy y(e) < y{p). But 
this contradicts the fact that (n, e) is an edge. Therefore, int(R) contains no vertices, and 

all vertices of R lie on its sides. 

Suppose some side, say N, contains two vertices nx and n2, where x{n{) < x(n2). Let 
w be a vertex on W. Since (to, n2) is an edge, w must be the same point as raj and must lie 
in the top left corner of R. By a similar argument, n2 must lie in the top right corner of R. 
Clearly neither W nor E can contain a second vertex. By an argument analogous to the 
one above, if 5 contained two vertices, these would have to lie in the bottom left and right 
corners of R. Since this is not possible, 5 must contain exactly one vertex, and so n = 3 
whenever R has a side containing two vertices. 

If no side of R contains two vertices, then clearly n = 4. This completes the proof that 
the condition is necessary. 

It is trivial to establish the sufficiency of the condition by construction. See, for example, 
Theorem 5.2 for a drawing of K3 and Theorem 5.1 for K4. 

D 

With the same reasoning as in Theorem 4.5 we can prove the following. 

Theorem 5.6 Kn may appear as a proper subgraph of a closed RID graph if and only if 

n< 4. 

6    Conclusions and Open Problems 

This paper has initiated the study of the rectangle of influence drawability problem. We 
have both provided combinatorial characterizations of several families of graphs that admit 
(open or closed) rectangle of influence drawings and have presented various drawing algo- 
rithms. All the algorithms can be implemented so that they (1) produce drawings with all 
vertices placed at intersection points of an integer grid of size 0(n2), (2) perform arithmetic 
operations on integers only, and (3) run in 0{n) time, where n is the number of vertices of 

the input graph. 

The paper naturally leads to several questions. We list here the ones that, in our opinion, 
are the most relevant. 

1. Except for the classes of graphs studied in the previous sections, i.e. cycles, wheels, 
trees, outerplanar graphs, and cliques, very little is known about which graphs admit 
rectangle of influence drawings. For example, it would be interesting to characterize 
(open or closed) RID planar graphs. A preliminary result is in [12], where it is shown 
that all interior faces in a planar open rectangle of influence drawing are triangles. 
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2. The characterization of which biconnected outerplanar graphs are closed RID is only 
partial. If the dual of the input graph has three leaves the graph is a closed RID; if the 
dual has five or more leaves, then the graph is not a closed RID. As for outerplanar 
graphs whose duals have four leaves, some are closed RID, some others are not. It 
would be interesting to complete this characterization. 

3. Rectangle of influence drawings are particularly appealing proximity drawings because 
of their small area. However, both a theoretic and an experimental study of other 
quality measures (for example the angular resolution and the screen-ratio) of such 
drawings should be performed. A taxonomy of the main quality measures to evaluate 
when comparing drawings of graphs is in [28, 6]. 

4. Finally, it would be a challenging problem to efficiently recognize rectangle of influence 
drawings. In [24] it is shown that given a set P of n points, both RIG(P) and RIG[P] 
can be computed in O (n log n + e), where e is the number of edges in the output. The 
question is whether one can verify if a given straight-line drawing is an (open or 
closed) rectangle of influence drawing in less than 0(nlogn + e) time. Note that an 
immediate consequence of Theorem 4.2 is that a polygonal path in the plane is an 
open rectangle of influence drawing if and only if it is strictly monotone in both the 
x- and the y-directions, or else it is a simple path that is purely horizontal or vertical. 
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